\(\int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [183]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 100 \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d} \]

[Out]

-2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-2*(a+a*sec(d*x+c))^(3/2)/a^3/d+2/5*(a+a*sec(d*x+c))^(5/2)
/a^4/d+2*(a+a*sec(d*x+c))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3965, 90, 52, 65, 213} \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {2 \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 (a \sec (c+d x)+a)^{5/2}}{5 a^4 d}-\frac {2 (a \sec (c+d x)+a)^{3/2}}{a^3 d}+\frac {2 \sqrt {a \sec (c+d x)+a}}{a^2 d} \]

[In]

Int[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d) - (2*(a + a*
Sec[c + d*x])^(3/2))/(a^3*d) + (2*(a + a*Sec[c + d*x])^(5/2))/(5*a^4*d)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3965

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(d*b^(m - 1)
)^(-1), Subst[Int[(-a + b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(-a+a x)^2 \sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^4 d} \\ & = \frac {\text {Subst}\left (\int \left (-3 a^2 \sqrt {a+a x}+\frac {a^2 \sqrt {a+a x}}{x}+a (a+a x)^{3/2}\right ) \, dx,x,\sec (c+d x)\right )}{a^4 d} \\ & = -\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {\text {Subst}\left (\int \frac {\sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^2 d} \\ & = \frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{a d} \\ & = \frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {2 \text {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{a^2 d} \\ & = -\frac {2 \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.79 \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (1-2 \sec (c+d x)-2 \sec ^2(c+d x)+\sec ^3(c+d x)-5 \text {arctanh}\left (\sqrt {1+\sec (c+d x)}\right ) \sqrt {1+\sec (c+d x)}\right )}{5 a d \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*(1 - 2*Sec[c + d*x] - 2*Sec[c + d*x]^2 + Sec[c + d*x]^3 - 5*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*Sqrt[1 + Sec[c
+ d*x]]))/(5*a*d*Sqrt[a*(1 + Sec[c + d*x])])

Maple [A] (verified)

Time = 3.59 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.82

method result size
default \(\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (5 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+1-3 \sec \left (d x +c \right )+\sec \left (d x +c \right )^{2}\right )}{5 d \,a^{2}}\) \(82\)

[In]

int(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/5/d/a^2*(a*(1+sec(d*x+c)))^(1/2)*(5*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)+1-3*sec(d*x+c)+sec(d*x+c)^2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 261, normalized size of antiderivative = 2.61 \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {5 \, \sqrt {a} \cos \left (d x + c\right )^{2} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, {\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{10 \, a^{2} d \cos \left (d x + c\right )^{2}}, \frac {5 \, \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) \cos \left (d x + c\right )^{2} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{5 \, a^{2} d \cos \left (d x + c\right )^{2}}\right ] \]

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/10*(5*sqrt(a)*cos(d*x + c)^2*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2), 1/5*(5*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a))*cos(d*x + c)^2 + 2*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2)]

Sympy [F]

\[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{5}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**5/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**5/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.10 \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {5 \, \log \left (\frac {\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} - \sqrt {a}}{\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} + \sqrt {a}}\right )}{a^{\frac {3}{2}}} + \frac {2 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {5}{2}}}{a^{4}} - \frac {10 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {3}{2}}}{a^{3}} + \frac {10 \, \sqrt {a + \frac {a}{\cos \left (d x + c\right )}}}{a^{2}}}{5 \, d} \]

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/5*(5*log((sqrt(a + a/cos(d*x + c)) - sqrt(a))/(sqrt(a + a/cos(d*x + c)) + sqrt(a)))/a^(3/2) + 2*(a + a/cos(d
*x + c))^(5/2)/a^4 - 10*(a + a/cos(d*x + c))^(3/2)/a^3 + 10*sqrt(a + a/cos(d*x + c))/a^2)/d

Giac [A] (verification not implemented)

none

Time = 2.29 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.54 \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 \, {\left (\frac {5 \, \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (5 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} + 10 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} a + 4 \, a^{2}\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )}}{5 \, d} \]

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

2/5*(5*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a*sgn(cos(d*x + c))) + sqrt(
2)*(5*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2 + 10*(a*tan(1/2*d*x + 1/2*c)^2 - a)*a + 4*a^2)/((a*tan(1/2*d*x + 1/2*c)
^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^5}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(tan(c + d*x)^5/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^5/(a + a/cos(c + d*x))^(3/2), x)